Review Test Submission: Quiz4 Course QMBLC Summer14 Test Quiz4 • Question 1 Shown below is a portion of an Excel output for regression analysis relating Y (dependent variable) and X

Review Test Submission: Quiz4 Course QMBLC Summer14 Test Quiz4 • Question 1 Shown below is a portion of an Excel output for regression analysis relating Y (dependent variable) and X (independent variable). The percent of the variability in the prediction of Y that can be attributed to the variable X Regression Statistics Multiple R 0.7732 R Square 0.5978 Adjusted R Square 0.5476 Standard Error 3.0414 Observations 10 ANOVA df SS MS F Significance F Regression 1 110 110      11.892 0.009 Residual 8   74     9.25 Total 9 184 Coefficients Standard Error t Stat P-value Intercept 39.222 5.942  6.600 0.000 X  -0.556 0.161 -3.448 0.009 • Question 2 Shown below is a portion of an Excel output for regression analysis relating Y (dependent variable) and X (independent variable). Is this model significant at the 0.05 level? Regression Statistics Multiple R 0.1347 R Square 0.0181 Adjusted R Square -0.0574 Standard Error 3.384 Observations 15 ANOVA df SS MS F Significance F Regression   1     2.750   2.75 0.2402 0.6322 Residual 13 148.850 11.45 Total 14 151.600 Coefficients Standard Error t Stat p-value Intercept 8.6   2.2197 3.8744 0.0019 X 0.25 0.5101 0.4901 0.6322 • Question 3 A regression analysis between sales and price resulted in the following equation Y=50,000 – 8000X The above equation implies that an • Question 4 The actual demand for a product and the forecast for the product are shown below. Calculate the MAD. Observation Actual Demand (A) Forecast (F) 1 35 — 2 30 35 3 26 30 4 34 26 5 28 34 6 38 28 • Question 5 Below you are given the first two values of a time series. You are also given the first two values of the exponential smoothing forecast. Time Period (t) Time Series Value (Y t) Exponential Smoothing Forecast (F t) 1 22 22 2 26 22 If the smoothing constant equals .3, then the exponential smoothing forecast for time period three is • Question 6 is the forecast for June based on a three-month weighted moving average applied to the following past demand data and using the weights: .5, .3, and .2 (largest weight is for the most recent data)? Month Demand Forecast January 40 February 45 March 57 April 60 May 75 June 87 • Question 7 The following time series shows the number of units of a particular product sold over the past six months. Compute the MSE for the 3-month moving average. Month Units Sold (Thousands) 1 8 2 3 3 4 4 5 5 12 6 10 • Question 8 Given an actual demand of 61, forecast of 58, and an alpha factor of .2, what would the forecast for the next period be using simple exponential smoothing?

Do you need us to help you on this or any other assignment?


Make an Order Now